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A two-dimensional model of flow and bed topography is proposed to investigate
the effect of sediment heterogeneity on the development of alternate bars. Within the
context of a linear stability theory the flow field, the bed topography and the grain size
distribution function are perturbed leading to an integro-differential linear eigenvalue
problem. It is shown that the selective transport of different grain size fractions and
the resulting spatial pattern of sorting may appreciably affect the balance between
stabilizing and destabilizing actions which govern bar instability. Theoretical results
suggest that sediment heterogeneity leads to a damping of both growth rate and
migration speed of bars, while bar wavelength is shortened with respect to the
case of uniform sediment. The above findings conform, at least qualitatively, to the
experimentally detected reduction of bar height, length and celerity. The observed
tendency of coarser particles to pile up towards bar crests is also reproduced by
theoretical results.

1. Introduction
Alternate bars are the most common type of large-scale bedforms which are

observed both in sandy streams and in gravel bed rivers. They essentially consist of
migrating alternating regions of scour and deposit with horizontal scale of the order
of several channel widths and vertical scale of the order of the flow depth. Their
vertical spatial scale being so large, the problem of predicting their occurrence and
their equilibrium characteristics has a profound impact on several aspects of river
engineering.

A fairly consistent picture of the process underlying bar development in cohesionless
channels has been built up through a large number of theoretical and experimental
works, which have been mainly developed in the last two decades. In particular, it
has been progressively established that the occurrence of bars and their response to
the planimetric evolution of channels are crucial ingredients required to characterize
the overall morphology of alluvial channels at the river reach scale (see the state of
the art reviews of Seminara & Tubino 1989, and Seminara 1995).

The formation of river bars has been conclusively explained in terms of an in-
herent instability of an erodible bed subject to a turbulent flow in straight channel,
which enables the growth of infinitesimal flow and bottom perturbations migrating
downstream. Several increasingly refined two-dimensional linear stability theories are
available in the literature for the case when the dominant form of sediment transport
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is bedload (see e.g. Callander 1969; Parker 1976; Fredsöe 1978; Colombini, Seminara
& Tubino 1987; Garcia & Niño 1993). These theories allow one to predict the growth
rate of perturbations within the linear regime, the marginal stability conditions in the
space of flow and sediment parameters and the wavelength and wave speed selected
by the instability mechanism, i.e. those corresponding to the maximum growth rate.
In particular, it appears that in bedload dominated channels the width to depth ratio
β is the control parameter of bar instability such that a threshold value βc can be
determined, for given Shields parameter Θ and relative grain roughness ds, above
which bars are expected to grow. The balance between stabilizing and destabilizing
actions yielded by linear theory also suggests that the alternate bar mode is the most
unstable, the higher modes (leading for example to central or multiple bar config-
urations) prevailing only for values of β which are much larger than the threshold
value.

Furthermore, Colombini et al. (1987) and Colombini & Tubino (1991) have inves-
tigated nonlinear interactions of various modes arising when β exceeds the threshold
value, showing that nonlinear effects cause bed perturbations to reach an equilibrium
finite amplitude characterized by periodic diagonal fronts. Under suitable conditions,
which are rarely encountered in nature, the above equilibrium solution may in turn
become unstable and bifurcate into a more complex quasi-periodic pattern (Schielen,
Doelman & De Swart 1993).

Whether the width-to-depth ratio keeps the role of control parameter of bar
instability when suspended load prevails, i.e. in sandy streams, is still an open
question. Suspended load has been found to be invariably destabilizing, i.e. enhancing
bar development, by Fredsöe (1978) and Kuroki (1988); on the other hand, Watanabe
& Tubino’s (1992) results suggest that for given grain size a threshold value of Shields
stress (i.e. of suspended load intensity) exists above which bar perturbations are
suppressed, the critical value βc becoming infinite. Furthermore, the three-dimensional
analysis of Repetto, Tubino & Zolezzi (1996) introduces a more subtle mechanism
of suppression of alternate bars in that it is found that suspension enhances the
occurrence of higher transverse modes which may then take over even for relatively
low values of β.

The analyses on river bars mentioned above have concentrated on the case of
uniform sediment. This is partly motivated by the complexity and cost of laboratory
work on sediment mixtures, especially when dealing with large-scale features which
involve a considerable amount of sediments. Furthermore, significant progress in
obtaining knowledge of the physical mechanisms underlying bedload transport of
sediment mixtures has been achieved only quite recently (see the extensive review of
Parker 1992).

Nevertheless, the mixed character of the sediment is a significant characteristic
of river beds, particularly of gravel bed rivers. A wide range of features of gravel
rivers cannot be adequately explained without reference to the entire particle size
distribution as well as to the related morphological characteristics of gravel beds
(armouring, vertical sorting). The selective transport of individual size fractions of
a mixture, which is induced by bed deformation and spatial non-uniformity of bed
shear stress distribution, results in a consistent pattern of longitudinal and transverse
sorting which in turn affects the balance between stabilizing and destabilizing effects
controlling bedform development. This is suggested by several field and flume data
(Lisle, Ikeda & Iseya 1991; Diplas & Parker 1992; Lisle & Madej 1992; Ashworth,
Ferguson & Powell 1992b; Lanzoni 1996). Furthermore, field observations of Whiting
et al. (1985) and theoretical results of Seminara, Colombini & Parker (1996) suggest
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that there exists a class of morphological patterns (called bedload sheets) which are
inherently associated with the heterogeneous character of the sediment and may be the
cause of temporal and spatial variations of bedload transport typical of gravel rivers.

The above considerations strongly motivate the need to investigate the role of
sediment heterogeneity on bar instability. The basic questions to be answered are:
How does the heterogeneous character of sediment affect the mechanism which gives
rise to bars in the uniform case? What is the spatial distribution of different grain
sizes induced by bar development? Does sediment non-uniformity introduce in the
stability analysis further ingredients which are inherently associated with particle
size distribution? Indeed, the spatial variations of both bottom roughness, which are
induced by sorting, and of bedload transport, which are triggered by the deviation
from equal mobility of different sizes, constitute additional mechanisms able to modify
the instability process with respect to the case of uniform sediment.

From the technical point of view the fundamental question posed by the mixed
character of sediments is that of ascertaining whether the region of bar occurrence
and the depth of scour and depositional regions change when sediment heterogeneity
is taken into account. Experimental findings seem to suggest that the topography of
bars is significantly modified. In particular, sediment non-uniformity has been found
to induce a somewhat episodic bar growth, even under steady hydraulic conditions,
and to prevent downstream migration of bars by inhibiting sediment transport over
them (Lisle et al. 1991). Moreover, depending on the average Shields stress and
relative bed roughness, a significant reduction of bar amplitude and change of bar
wavelength have been detected compared to the case of uniform sediment (Lanzoni,
Tubino & Bruno 1994; Lanzoni 1996).

In the present investigation a suitable treatment of sediment mixtures, whereby the
model of Parker (1990) is adopted along with Hirano’s (1971) concept of active layer,
is incorporated within the framework of a linear stability analysis of flow and bottom
topography. Since sediment heterogeneity mainly characterizes gravel bed rivers, we
neglect suspended load. Therefore a simple two-dimensional description of flow and
sediment transport is adopted.

A similar stability analysis for the grain size distribution has been recently proposed
by Seminara et al. (1996) to explain the formation of bedload sheets. The most
noticeable difference introduced by the present work is that the full coupling between
perturbations of bottom topography and grain size distribution is retained.

The main output of the theory is a significant damping of bar instability, which is
implied by the decrease of the growth rate of bar perturbations for increasing values
of the standard deviation of sediment mixture. On the other hand, the critical value
of width ratio for the occurrence of bars does not seem to be significantly affected by
the heterogeneous character of the sediment, the values of βc falling slightly above
or below those obtained in the uniform case depending on the dimensionless grain
roughness.

Furthermore, theoretical results suggest that the pattern of sorting which is in-
duced by the development of bottom topography crucially depends on the relative
importance of the mechanisms which are responsible for the spatial displacement of
particles. In particular, while gravitational effects tend to pull selectively coarser par-
ticles downward, the unequal response of grain sizes to spatial variations of bottom
stress seems to promote the piling up of coarser particles towards bar crests. When
the spatial variations of bottom topography are relatively slow, as in the case of river
bars, the latter mechanism seems to prevail leading to the progressive coarsening
which is often observed along the upstream face of bars.
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Further related questions regarding the effect of grain sorting on the equilibrium
amplitude of bars will require additional investigation where nonlinear effects are
accounted for.

The rest of the paper is organized as follows. In § 2 we formulate the problem. The
linear stability analysis is reported in § 3, while in § 4 we derive an analytical solution
of the dispersion relationship arising from linear theory for the case when the average
grain size distribution function is represented in terms of Dirac distributions. Finally,
§ 5 contains a discussion of the results along with some concluding remarks.

2. Formulation of the problem
Let us consider the flow in a straight alluvial channel with non-erodible banks and

constant width 2B∗ large enough for the flow to be modelled as two-dimensional. The
channel bottom is assumed to be made up of a mixture of cohesionless sediments
of density ρs. The probability density function describing the distribution of grain
sizes available for bedload transport which are contained within the surface layer is
denoted by f(φ, s∗, n∗, t∗). Here φ is the sedimentological scale for particle size defined
such that the grain diameter (in mm) is d∗ = 2−φ, s∗ and n∗ are the longitudinal
and transverse Cartesian coordinates and t∗ is time (here and in the following a star
superscript denotes dimensional quantities).

The first preliminary question which needs to be addressed is that of selecting a
suitable model for the probability density function f. Plots of cumulative frequencies
of grain size distributions of sediments transported in nature versus the logarithms of
grain sizes are generally line segments. A common explanation of this behaviour is
that these segments result from log-normal subpopulations that are either truncated or
overlapped (Visher 1969; Tanner 1983), each transported by a particular mechanism
(bedload, saltation, suspended load). Nevertheless, sediments transported by a single
mechanism may also display segmented patterns since a prolonged transportation
as bedload or suspended load is required to let the grain size distribution become
nearly perfectly log-normal (Sengupta, Ghosh & Mazumder 1991). Quite often grain
size distributions of natural sediments are found to fit a log-hyperbolic distribution
(Bagnold & Barndorff-Nielsen 1980) or a bimodal distribution (Shaw & Kellerhals
1982). Estimation of the four parameters needed for the specification of a hyperbolic
distribution, however, is rather complicated as discussed in Christiansen & Hartman
(1991). Therefore, in the following we will assume that the gross features of the grain
size distribution can be adequately described by the first and second moments of the
distribution. Hence we can write

φg =

∫ ∞
−∞
fφ dφ, σ2 =

∫ ∞
−∞

(φ− φg)2f dφ, (2.1a,b)

which allow us to define the geometric mean grain diameter d∗g = 2−φg and its standard
deviation σg = 2σ , respectively. By definition the probability density function is subject
to the following integral condition:∫ ∞

−∞
f(φ, s∗, n∗, t∗) dφ = 1. (2.2)

It is worth pointing out that the use of a probability density function f which is
independent of the vertical coordinate rules out the possibility of taking into account
the effect of vertical sorting on bar development. The above assumption, which goes
back to the original formulation of the Exner equation for size fractions introduced
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Figure 1. Sketch of the channel and notation.

by Hirano (1971) and has been successfully employed by Seminara et al. (1996) to
explain the formation of gravel sheets, may only be justified in the case of bedforms
with negligible vertical scale, while it may result into a too crude approximation when
applied in a context in which bedform development and migration act significantly to
mix the sediment within the bed layer. The case of dunes in heterogeneous sediments
is a notable example where vertical sorting may play a significant role (see Ribberink
1987). Some recent attempts to characterize vertical sorting through a continuous
vertical size distribution are documented in the literature (see e.g. Armanini 1995).
However, since we are concerned with the process of incipient formation of bars we
may discard this effect, which greatly simplifies the theoretical treatment. Moreover,
unlike in the dune case, here the relevant spatial scale of flow and bottom non-
uniformity is channel width which is typically much larger than flow depth.

We wish to analyse how the flow field responds to simultaneous two-dimensional
infinitesimal perturbations both of the grain size distribution and of the bottom
configuration, assuming that the fluid can adapt instantaneously to such perturbations.
Our basic state is a uniform flow over a flat cohesionless bed, with flow depth D∗0
and average speed U∗0 , characterized by a grain size probability density function
f0(φ). Let d∗g0 denote the geometric mean grain size of such a distribution, which is
uniformly distributed in space. The effect of lateral distribution of grain size, such
as that associated with the presence of discrete patches (Paola & Seal 1995), can be
accounted for by setting a suitable initial distribution. Also, note that the influence
of local composition on grain mobility is felt through the dependence of the hiding
function on local mean grain diameter (see equation (2.15) below).

The formulation of the problem for the flow follows closely the work of Colombini et
al. (1987) and will only briefly be recalled here. A steady two-dimensional formulation
is adopted in as much as spatial variations occur on planimetric scales much larger
than the flow depth and bedforms develop quite slowly. Sidewall layers are ignored and
replaced by the condition of vanishing transverse component of the depth-averaged
velocity.

The governing equations for the flow then read

UU,s + VU,n = −H,s − β τs/D, (2.3a)

UV,s + VV,n = −H,n − β τn/D, (2.3b)

(UD),s + (VD),n = 0, (2.3c)

where (U, V ) is the depth-averaged velocity vector, H is the free-surface elevation,
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(τs, τn) are longitudinal and transverse components of bottom shear stress and D is
the local flow depth (see figure 1). The variables have been made dimensionless in the
form

(U∗, V ∗) = U∗0 (U,V ), (D∗, H∗) = D∗0(D, F2
r H), (2.4a,b)

(s∗, n∗) = B∗(s, n), (τ∗s , τ∗n) = ρU∗20 (τs, τn), (2.4c,d )

where ρ is fluid density, Fr is the Froude number of uniform basic flow, and the width
ratio β is:

β = B∗/D∗0 . (2.5)

Closure of (2.3a, c) requires a suitable constitutive relationship for bottom stress.
We thus express the shear stress in terms of a friction coefficient C defined by the
relationship

(τs, τn) = C(U,V )(U2 + V 2)1/2. (2.6)

The structure of C strongly depends on the presence of small-scale (ripples) and/or
mesoscale (dunes) bedforms which are often found to coexist with alternate bars,
particularly in sandy rivers. Here we restrict attention to gravel bed rivers in which,
although the bottom may contain a certain amount of sand, bedload is dominant and
dunes are less important. Incidentally, note that some experimental evidence exists
which suggests that dune height tends to be damped due to sorting effects (Klaassen
1990; Lanzoni 1996).

Assuming local equilibrium we can express C in terms of the local roughness using
the following relationship:

C−1/2 = 6 + 2.5 ln (D/ks), (2.7)

which strictly applies to uniform conditions and a plane bed, where the dimensionless
grain roughness height (scaled by D∗0)

ks = nσdσ (2.8)

is taken to be proportional to a coarse grain size defined as d∗σ = d∗g2σ , the constant
of proportionality nσ being roughly equal to 2 (Parker 1992).

It is worth pointing out that through the above definition of local roughness the
heterogeneous character of the sediment introduces a first novel feature in the stability
problem in that perturbations of the (local) average grain size, which are induced
by sorting effects associated with bar development, produce through equation (2.6)
perturbations of bottom stress. Whether the above effect is able to enhance or damp
bar instability can only be ascertained through the determination of the sorting
pattern associated with bar topography. We will see that in the case of bars the
progressive coarsening observed along the upstream face of bedforms produces a
local increase of roughness there, i.e. of shear stress, whose effect cumulates with the
perturbed distribution of longitudinal stress typical of bars with uniform sediment.

Finally, we require that the sidewalls must be impermeable to the fluid; hence we
write

V = 0 (n = ± 1). (2.9)

The mathematical problem governing the motion of the fluid is then coupled to the
conservation equations for the sediment. The formulation of the problem of transport
and mass balance of each size fraction within the mixture follows closely that of
Seminara et al. (1996). Therefore we will simply summarize it (see also Parker 1992).
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We assume that sediments available for transport are contained in a surface-active
layer (Hirano 1971) which is taken to be initially well mixed so that the probability
density function f of the material within it has neither a vertical structure nor a
longitudinal or a transverse structure.

The governing equations for the motion of the sediment mixture are: a statement
of mass balance for each size fraction, which allows for variation of bottom elevation
in time and transverse variations of bedload transport; a dynamic equation to specify
the bedload transport rate of each fraction. The former reads

fη,t + Laf,t + [(fQs),s + (fQn),n] = 0, (2.10)

where η = (F2
r H −D) is the dimensionless bottom elevation and (Qs, Qn) is a bedload

vector of modulus Φ such that fΦ is the dimensionless volumetric discharge per unit
width of grains in the size range φ, φ+dφ. Quantities in (2.10) are made dimensionless
in the form

(η∗, L∗a) = D∗0(η, La), t∗ = t(1− p)D∗0B∗/Q0, (2.11a,b)

(Q∗s , Q
∗
n) = Q0(Qs, Qn), ∆ =

ρs

ρ
− 1, Q0 = (∆g)1/2d

∗3/2
g0 , (2.11c–e)

where p is the porosity of the mixture and g is gravity. The thickness L∗a of the active
layer is taken to be proportional to a typical coarse grain size, namely d∗σ . Recalling
equation (2.8) we will assume in the following La = ks, pointing out, however, that
this assumption is only justified in the initial phase of bar growth since it neglects the
effect of bar migration on the sediment exchange with the bed layer.

To complete the formulation we need dynamic relationships to specify bedload
intensity and the direction of trajectories that particles follow due to the combined
effect of bottom shear stress and gravity. Following Parker (1990) we express the
sediment load function Φ as

Φ = Θ3/2
g G(ζ) (2.12)

where ζ is a dummy variable and

Θg =
τ∗

ρ∆gd∗g0

(2.13)

denotes the dimensionless bed shear stress (Shields parameter) based on the geometric
mean diameter d∗g0. Several empirical predictors of the transport capacity function
G(ζ) are available in the literature. In the following we will adopt the function
proposed by Parker (1990), which is based on field data from Oak Creek River, where
the dummy variable ζ is given the form

ζ = ω
Θg

Θr

d∗g0

d∗g
ghr

(
d∗

d∗g

)
, (2.14)

and Θr = 0.0386 is a reference Shields stress, ghr is a reduced hiding function (Diplas
1987; Andrews & Parker 1987; Parker 1990) which adjusts the mobility of size d∗
relative to d∗g , and ω is a straining function introduced to account for the effect of
the standard deviation of the grain size distribution on the transport rate of each size
fraction (Parker 1990).

Field data and laboratory investigations suggests the following form of ghr:

ghr = (d∗i /d
∗
g)
−b, (2.15)
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Author source of data b

Parker & Klingeman (1982) Oak Creek river 0.06
Parker & Klingeman (1982) Oak Creek river 0.02a

White and Day (1982) Recirculating flume 0.19
Misri, Garde & Ranga Raju (1984) Recirculating flume 0−0.08
Andrews & Erman (1986) Sagehen Creek 0.13b

Wilcock (1987) Recirculating flume 0−0.03
Ashworth & Ferguson (1989) Feshie and Dubhaig rivers 0.33–0.35
Ashworth & Ferguson (1989) Lyngdalselva river 0.08
Ferguson, Prestegaard & White river 0.12b

Ashworth (1989)
Parker (1990) Oak Creek river 0.10
Ashworth et al. (1992a) Sunwapta river 0.21
Kuhnle (1992) Goodwin Creek river 0.19a,c

Wilcock (1992) Recirculating flume 0.27d

Wilcock & McArdell (1993) Recirculating flume 0.55e

Ferguson (1994) Roaring river 0.13b

Wathen et al. (1995) Allt Dubhaig river 0.30b

Wathen et al. (1995) Allt Dubhaig river 0.10

a Critical stress based on subsurface grain size distribution.
b Critical stress inferred from maximum clast size.
c Mixed gravel and sand bed.
d Strongly bimodal mixture.
e Very poorly sorted, bimodal mixture.
Unless otherwise specified with a superscript the critical stress and, hence, the hiding factor b,

are inferred from fractional transport rates and are based on surface grain size distribution.

Table 1. Hiding exponent obtained from laboratory and field data.

with the exponent b ranging between 0 and 0.55 (see table 1). As pointed out by
Buffington & Montgomery (1997) the variability of the exponent b, which is basically
a consequence of different methods adopted to estimate the critical stress, also reflects
the role of various factors related both to sediment characteristics, and to experimental
procedure and data analysis. In particular, significant departures from equal mobility
(i.e. b = 0) are documented in the case of strongly bimodal mixtures (Kuhnle 1992;
Wilcock 1992; Wilcock & McArdell 1993).

We set

(Qs, Qn) = (cos δ, sin δ)Φ (2.16)

with δ denoting the angle which the direction of bedload transport makes with the
s-direction. Investigations on the direction of bedload transport of uniform sediments
in the presence of weak spatial variations of the direction of bottom shear stress and
slow spatial variations of bottom elevation (Kikkawa, Ikeda & Kitagawa 1976; Ikeda
1982; Parker 1984; Olesen 1987; Sekine & Parker 1992; Talmon, Struiksma & van
Mierlo 1995) suggest a prediction for δ of the form

sin δ = sin χ− r

βΘ1/2
η,n (2.17)

where χ is the angle that the bottom stress vector makes with the s-axis and the
parameter r ranges between 0.5 and 1.5.

Formula (2.17) can be generalized to mixtures, following the lead of Parker &
Andrews (1985). Since coarser grains feel a larger ratio of transverse component
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of gravitational force to downstream drag force than finer grains, it follows that
coarser grains move preferentially downslope. The above effect can be accounted
for by introducing a suitable weighting function fhr in equation (2.17) such that the
trajectory of particles of size d∗ is defined in terms of the expression

sin δ = sin χ− r

β

[
1

Θg

f−1
hr

(
d∗

d∗g

)]1/2

η,n, (2.18)

where we use the reduced hiding function fhr proposed by Egiazaroff (1965), as
modified by Ashida & Michiue (1972), namely

f−1
hr (d∗/d∗g) =

{
(d∗/d∗g)(1 + 0.782 log d∗/d∗g)−2, d∗/d∗g > 0.4

0.843, d∗/d∗g < 0.4.
(2.19)

Finally, in order to complete the formulation for the sediment transport we must
require the sidewalls to be impermeable to the sediment; hence we write

Qn = 0 (n = ± 1). (2.20)

In the next section the above formulation will be the basis for a linear stability
analysis of uniform configuration.

3. Linear theory
We want to investigate the linear response of the flow field to infinitesimal per-

turbations of bottom configuration and grain size distribution. Therefore we perturb
our basic state (the uniform flow and the uniformly distributed probability density
function of grain size) and introduce the following representation of the flow field
and grain size distribution:

(U,V ,D,H) = (1, 0, 1, H0)

+ε (U1(s, n, t), V1(s, n, t), D1(s, n, t), H1(s, n, t)) + O(ε2), (3.1a)

f = f0(φ) + εf1(φ, s, n, t) + O(ε2), (3.1b)

with ε small parameter (strictly infinitesimal). The above expansion implies that
a similar representation can be used to express the longitudinal and transverse
components of bedload and bottom stress, namely

(Qs, Qn, τs, τn) = (Φ0, 0, C0, 0)

+ε(Qs1(φ, s, n, t), Qn1(φ, s, n, t), τs1(φ, s, n, t), τn1(φ, s, n, t)) + O(ε2), (3.2)

where Φ0 and C0 denote the bedload function and the friction coefficient of the
undisturbed uniform configuration.

Furthermore we write

(φg, σ) = (φg0, σ0) + ε (φg1(s, n, t), σ1(s, n, t)) + O(ε2), (3.3a)

(η, La) = (0, La0) + ε (η1(s, n, t), La1(s, n, t)) + O(ε2) (3.3b)

where

φg0 =

∫ ∞
−∞
f0φ dφ, σ2

0 =

∫ ∞
−∞

(φ− φg0)
2f0 dφ, (3.4a,b)
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φg1 =

∫ ∞
−∞
f1φ dφ, σ1 =

1

2σ0

∫ ∞
−∞

(φ− φg0)
2f1 dφ. (3.4c,d )

On substituting from (3.1a), (3.3) into the flow equations (2.3a–c) and performing
linearization at O(ε) we obtain the following differential system:

U1,s +H1,s + β(τs1 − C0D1) = 0, V1,s +H1,n + βτn1 = 0, U1,s + V1,n + D1,s = 0,

(3.5a–c)

where, using the relationships (2.6), (2.7) and (2.8), the longitudinal and transverse
components of bottom shear stress can be expressed in the form

τs1 = C0{(2U1 + D1CD) + tφφg1 + tσσ1}, τn1 = C0V1, (3.6a,b)

with

tφ = −tσ = −dσ0Cd ln 2, dσ0 = dg02
σ0 , dg0 = 2−φg0 , (3.7a–c)

C0 = C(1, dσ0), CD =
1

C0

C,D|1,dσ0
, Cd =

1

C0

C,dg |1,dσ0
, (3.7d–f )

where dg0 denotes the undisturbed value of dimensionless geometric mean size while
the subscript (1, dσ0) implies that functions are evaluated with reference to the
unperturbed uniform state, namely with D = 1 and dσ = dσ0.

It is worth noting that in equation (3.6a) the effect of sorting on bed shear stress
is explicitly accounted for through the dependence of τs1 on the perturbed values
(φg1, σ1) of the first and the second moments of grain size distribution, whence local
variations of grain size distribution induce variations of local roughness which are felt
by the fluid at a linear level as variations of longitudinal stress. The above effect has
been found to play a crucial role in determining bedload sheet instability (Seminara et
al. 1996), while here it plays only a complementary role since the full coupling between
perturbations of bottom topography and grain size distribution has been retained;
furthermore, while in the case of bedload sheets the role of free instabilities related to
sediment heterogeneity is dominant, in our case perturbations of grain size distribution
are mainly driven by perturbations of bottom topography. We will see that the balance
between the effect of bottom perturbation and that of grain size perturbation on the
longitudinal stress crucially depends on the phase lag of dg relative to bottom elevation.

The stability analysis then proceeds with the sediment balance equation at O(ε),
which reads

f0(F
2
r H1,t − D1,t) + La0f1,t + {(Φ0f1 + Qs1f0),s + (Qn1f0),n} = 0. (3.8)

Linearity implies that only the unperturbed value of the thickness of the active layer
La0 = nσdσ0 appears in equation (3.8). The argument ζ of the function G (see (2.12),
(2.14)) can be expanded in the form

ζ = ζ0{1 + ε[(2U1 + D1CD)(1 + ωT ) + ζφφg1 + ζσσ1] + O(ε2)}, (3.9)

with

ζ0 = ω0

Θg0

Θr

2b(φ−φg0), ζφ = (1− b) ln 2 + tφ(1 + ωT ), ζσ = tσ(1 + ωT ) + ωσ

(3.10a–c)
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and

ω0 = ω(σ0, Θg0), ωσ =

[
1

ω

∂ω

∂σ

]
σ0,Θg0

, ωT =
Θg0

Θr

[
1

ω

∂ω

∂T

]
σ0 ,Θg0

, (3.11a–c)

where b is the exponent of the reduced hiding function (2.15), Θg0 is Shields parameter
of the basic unperturbed flow and the subscript (σ0, Θg0) indicates that quantities are
evaluated with the unperturbed values of standard deviation and Shields stress.

Combining (2.16) and (2.18), and recalling the relationships (3.6) and (3.9), the O(ε)
longitudinal and transverse components of bedload discharge are expressed in the
form

Qs1 = Φ0{(2U1 + D1CD)qη + qφφg1 + qσσ1}, Qn1 = Φ0{V1 − R(F2
r H1,n − D1,n)}

(3.12a,b)

where

qη = 3
2

+ (1 + ωT )Γ , qφ = 3
2
tφ + ζφ Γ , qσ = 3

2
tσ + ζσ Γ (3.13a–c)

Φ0 = Θ
3/2
g0 G(ζ0), Γ =

[
ζ

G

dG

dζ

]
ζ=ζ0

, R =
r

β(Θg0fhr)1/2
. (3.13d–f )

The complex coefficients qη, qφ, qσ represent the perturbations of longitudinal bed-
load associated with variations of the flow field induced by bottom perturbations and
by the variations of the mean and the variance of grain size distribution.

Linearity of the problem allows us to perform a normal mode analysis of the
perturbations by assuming

(U1, D1, H1) = (Û1(t), D̂1(t), Ĥ1(t)) sin ( 1
2
πn) exp (iαs) + c.c., (3.14a)

V1 = V̂ 1(t) cos ( 1
2
πn) exp (iαs) + c.c., (3.14b)

(f1, φg1, σ1) = (f̂1(φ, t), φ̂g1(t), σ̂1(t)) sin ( 1
2
πn) exp (iαs) + c.c., (3.14c)

with α dimensionless wavenumber (scaled with 1/B∗) and c.c. denoting the complex
conjugate of a complex number. For clarity only the first mode in the transverse
direction is considered in (3.14a–c) and in the following. The general form of the
solution which accounts for any other transverse modes can be readily obtained.

On substituting from (3.14a,b) into (3.5) the differential system governing the flow
field is transformed into the following linear homogeneous algebraic system:

3∑
j=1

[aj1Û1 + aj2V̂ 1 + aj3Ĥ1 + aj4D̂1 + aj5(φ̂g1 − σ̂1)] = 0, (3.15)

where

a11 = iα+ 2βC0, a12 = a21 = a24 = a25 = a33 = a35 = 0, (3.16a,b)

a13 = a31 = a34 = iα, a23 = −a32 = 1
2
π, (3.16c,d )

a14 = βC0(CD − 1), a15 = −βC0dσCd ln 2, (3.16e,f )

a22 = iα+ βC0. (3.16g)

Using (3.15) and recalling that (3.14a) implies that the bottom perturbation has a
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similar structure, with η̂1 = F2
r Ĥ1 − D̂1, we can readily express Û1, V̂ 1, D̂1, Ĥ1 in the

form

[Û1, V̂ 1, Ĥ1, D̂1] = (b10, b20, b30, b40)η̂1 + (b11, b21, b31, b41)(φ̂g1 − σ̂1), (3.17)

with

b10 = − 1

iαF2
r − P0

(
P0 +

π2

4

1

a22

)
, b11 =− P1

iαF2
r − P0

(
iαF2

r +
π2

4

1

a22

)
, (3.18a,b)

b20 = −π
2

iα

a22

1

iαF2
r − P0

, b21 = −π
2

iα

a22

P1

iαF2
r − P0

, (3.18c,d )

b30 =
iα

iαF2
r − P0

, b31 =
iαP1

iαF2
r − P0

, (3.18e,f )

b40 =
P0

iαF2
r − P0

, b41 = F2
r

iαP1

iαF2
r − P0

, (3.18g,h)

P0 =
1

a11 − a14

[
(iα)2 − a11a

2
23

a22

]
, P1 =

a15

a11 − a14

. (3.18i, j )

On substituting from (3.14c) and (3.17) into the sediment continuity equation (3.8)
we obtain the following differential equation:

f0η̂1,t + La0f̂1,t = [ΓFf̂1 + f0(Γφφ̂g1 + Γσσ̂1 + Γηη̂1)], (3.19)

where

Γφ = −Φ0{iα(2b11 + b41CD)qη + iαqφ − 1
2
πb21}, (3.20a)

Γσ = Φ0{iα(2b11 + b41CD)qη − iαqσ − 1
2
πb21}, (3.20b)

ΓF = −iαΦ0, Γη = −Φ0

{
iα(2b10 + b40CD)qη + 1

2
π
(−b20 + R 1

2
π
)}
. (3.20c,d )

Finally, integrating (3.19) over the grain size and imposing the integral condition
(2.2), which at order ε requires that∫ ∞

−∞
f̂1 dφ = 0, (3.21)

we obtain the equation

η̂1,t =

[
φ̂g1

∫ ∞
−∞
f0Γφ dφ+ σ̂1

∫ ∞
−∞
f0Γσ dφ+

∫ ∞
−∞
f̂1ΓF dφ+ η̂1

∫ ∞
−∞
f0Γη dφ

]
. (3.22)

Substituting η̂1,t from (3.22) into (3.19) we find

La0f̂1,t =

{
f0

[
Γφ −

∫ ∞
−∞
f0Γφ dφ

]
φ̂g1 + f0

[
Γσ −

∫ ∞
−∞
f0Γσ dφ

]
σ̂1

+

[
f̂1ΓF − f0

∫ ∞
−∞
ΓFf̂1 dφ

]
+ f0

[
Γη −

∫ ∞
−∞
f0Γη dφ

]
η̂1

}
. (3.23)

We then obtain a system of two coupled integro-differential equations (3.22),
(3.23) that constitute the main result of linear analysis. Equation (3.22) suggests that
sediment heterogeneity does affect bar instability through several contributions. In
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fact, if we neglect the effect of heterogeneity of the sediment, which implies that f̂1

vanishes, (3.22) reduces to the usual equation which governs the linear growth of bar
perturbations with uniform sediments, namely

η̂1,t = (Ω − iω)η̂1, (3.24)

where Ω − iω is the complex growth rate. Moreover, bottom topography affects the
spatial distribution of grain size through the fourth term appearing in (3.23). Also,

note that the unknown variables in (3.22), (3.23) are η̂1 and f̂1, since φ̂g1 and σ̂1 are

related to f̂1 through (3.4c, d). The procedure can be readily generalized to account
for any moment of grain size distribution.

4. Analytical solution
The two integro-differential equations (3.22), (3.23) which govern the growth of per-

turbations of bottom elevation and grain size distribution can be solved numerically.
However, an analytical treatment is possible for the case of a mixture composed of
N different discrete sizes, following a procedure similar to that adopted by Seminara
et al. (1996). We then assume the probability density function f to be represented in
terms of a sum of N delta Dirac functions δ(φ− φi), each centred on φi, yielding

[f0(φ), f̂1(φ, t)] =

N∑
i=1

{[f0i, f̂1i(t)]δ(φ− φi)}. (4.1)

We reformulate definitions (3.4c, d) into the discrete forms

φ̂g1(t) =

N∑
i=1

f̂1i(t)φi, σ̂1(t) =
1

2σ0

N∑
i=1

[f̂1i(t)(φi − φg0)
2]. (4.2a,b)

On substituting from (4.1) and (4.2) into (3.22) we obtain

η̂1,t =

[
N∑
i=1

(f̂1iφi)Σ1 +
1

2

N∑
i=1

[f̂1i(φi − φg0)
2]Σ2 + η̂1Σ3 +

N∑
i=1

(f̂1iΓFi)

]
, (4.3)

where

Σ1 =

N∑
i=1

(
f0iΓφi

)
, Σ2 =

N∑
i=1

(f0iΓσi) , Σ3 =

N∑
i=1

(
f0iΓηi

)
, (4.4a–c)

and the following notation is adopted:

(Γφi, Γσi, ΓFi, Γηi) =
[
Γφ(φi), Γσ(φi), ΓF (φi), Γη(φi)

]
. (4.5)

Equation (3.23) evaluated at discrete points φi (i = 1, 2, . . . , N− 1) provides (N − 1)

equations describing the time evolution of the (N−1) perturbations f̂1i(t) of the grain
size distribution function

f̂1i,t =
1

La0

{
f0i[Γφi − Σ1]

N∑
j=1

(f̂1jφj) + f0i[Γσi − Σ2]
1

2σ0

N∑
j=1

[f̂1j(φj − φg0)
2]

+

[
f̂1iΓFi − f0i

N∑
j=1

(ΓFjf̂1j)

]
+ f0i[Γηi − Σ3]η̂1

}
. (4.6)
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Figure 2. Examples of neutral curves for alternate bar formation in the case of a bimodal mixture
(dg0 = 0.01; σ0 = 2): (a) Θg0 = 0.07; (b) Θg0 = 0.10. The corresponding curves for the uniform
sediment case are also reported (dotted lines).

We then obtain a linear algebraic eigenvalue problem if we write

(η̂1, f̂1i) =

N∑
k=1

(e(k), ϕ
(k)
i ) exp (ckt), (4.7)

where ck = Ωk − iωk is the kth eigenvalue, with Ωk and ωk denoting the growth
rate and the angular frequency of perturbations, while (e(k), ϕ

(k)
1 , ϕ

(k)
2 , . . .) is the kth

eigenvector.
Note that if we set ek = 0 we reduce the system (4.3), (4.4) to the eigenvalue

problem for the bedload sheet case. The uniform sediment case is easily recovered by
setting N = 1 and leads to a dispersion relationship of the form (Colombini et al.
1987)

F (Ω,ω, α, β,Θg0, dg0) = 0, (4.8)

which for given values of the unperturbed Shields stress and dimensionless geometric
mean size (Θg0, dg0) allows one to define neutral conditions as those corresponding
to vanishing amplification factor Ω. In the plane (α, β) this condition determines a
neutral curve exhibiting a minimum which defines the critical value of width ratio
βc above which bars are expected to grow and the wavelength Lc = 2παc of fastest
growing perturbations (see figure 2).

In the case of a graded mixture made of N discrete sizes, substituting from (4.7)
into (4.3), (4.6) we obtain a dispersion relationship for N eigenvalues. Though the
solution of the general case can be readily obtained, it proves to be more convenient
to analyse the simplest case of a bimodal mixture (N = 2). The dispersion relationship
then reads

(Ω − iω) = 1
2
{(ψ11 + ψ22)±

√
(ψ11 − ψ22)2 + 4ψ12ψ21}, (4.9)

where

ψ11 =
1

La0

{
f01[Γφ1 − (f01Γφ1 + f02Γφ2)](φ1 − φ2) + [ΓF1 − f01(ΓF1 − ΓF2)]

+f01[Γσ1 − (f01Γσ1 + f02Γσ2)]
1

2σ0

[(φ1 − φg0)
2 − (φ2 − φg0)

2]

}
, (4.10a)

ψ12 =
f01

La0
[Γη1 − (f01Γη1 + f02Γη2)], (4.10b)
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ψ21 = (f01Γφ1 + f02Γφ2)(φ1 − φ2) + (ΓF1 − ΓF2)

+(f01Γσ1 + f02Γσ2)
1

2σ0

[(φ1 − φg0)
2 − (φ2 − φg0)

2], (4.10c)

ψ22 = f01Γη1 + f02Γη2. (4.10d)

Examples of marginal curves for a bimodal mixture are reported in figure 2 for
different values of the Shields parameter. The comparison with the corresponding
curves of the uniform sediment case (dotted lines in the figure) suggests that sediment
heterogeneity slightly modifies the region of occurrence of bars and may lead to
widening or narrowing of the unstable region depending upon the value of Shields
stress. A detailed discussion of the effect of sorting on bar stability is deferred to the
next section.

It is worth pointing out that in the case of mixtures the dispersion relationship
depends not only on Θg0 and dg0 but also on the standard deviation of the mixture.
Also note that for a bimodal mixture composed of an equal percentage of the two
fractions the quantity [(φ1−φg0)

2− (φ2−φg0)
2] appearing in the coefficients ψ11 and

ψ22 vanishes.
In general the dispersion relationship (4.9) provides two different eigenvalues.

The first, namely the one obtained by choosing the positive square root, recovers
the eigenvalue of the uniform sediment case as the variance of the mixture tends
to vanish, while the second degenerates into a purely imaginary solution. When
the perturbation of bottom amplitude is neglected the latter eigenvalue reduces to
the bedload sheet mode investigated by Seminara et al. (1996). In this case the
analysis of the limiting case of weak sorting leads to similar results in that the
bedload sheet mode reduces to a sorting wave that propagates downstream with
vanishing growth rate. The interested reader is referred to the above paper for further
details.

5. Results and discussion
As pointed out in the Introduction, some recent experimental findings seem to

suggest that the topography of bars is significantly modified by sediment heterogeneity.
A brief account of the experimental results obtained by Lanzoni et al. (1994) is given
herein. The experiments were performed in a rectangular recirculating flume, 18 m
long and 0.36 cm wide, located in the Laboratory of the Hydraulic Institute of Genoa
University. To investigate the effect of grain sorting on the formation of alternate
bars the experimental runs were repeated, under similar hydraulic conditions, using
a uniform sediment made up of glass spheres with diameter 1.5 mm and mixtures of
glass spheres with roughly the same mean geometric grain diameter.

Figure 3(a,b) summarizes the main results of experiments with a bimodal mixture
with diameters 1 mm and 2 mm in proportion 1 : 1. According to the indexes of
bimodality introduced by Wilcock (1993) and Sambrook Smith, Nicholas & Ferguson
(1997), this mixture exhibits a low degree of bimodality; hence, the hiding exponent
b is likely to depart only slightly from zero (see table 1). Figure 3(a,b) shows that the
major and unambiguous effect of sediment heterogeneity in each run is the decrease of
both height and wavelength of bars with respect to the uniform sediment case. More
precisely, figure 3(a) suggests that the damping effect related to sediment heterogeneity
increases as the Shields parameter decreases, leading to a maximum 50% reduction
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Figure 3. The experimental results of Lanzoni et al. (1994) for (a) bar height H∗b and (b) bar
wavelength L∗b are plotted versus Shields parameter: open circles refer to experiments with glass
spheres with diameter 1.5 mm; full circles refer to experiments with bimodal mixtures of glass
spheres with diameters 1 mm and 2 mm.
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Figure 4. The ratio Ωb/Ωu between the growth rate of alternate bars for the bimodal case and for
the uniform case is plotted versus bar wavenumber for different values of the standard deviation of
the mixture (dg0 = 0.001; β = 15; Θg0 = 0.08).

of bar height when Θg0 falls in the range 0.05–0.06. Moreover, the damping effect
vanishes when the Shields parameter approaches the value 0.1.

The linear stability theory developed herein strictly holds for infinitesimal disturb-
ances and therefore neglects finite-amplitude effects as well as the effect of the vertical
pattern of sorting which is experimentally observed to form as bars approach their
equilibrium configuration (Lanzoni 1996). In spite of these restrictions the present
theoretical results are in general agreement with the experimental observations. The
damping effect of sorting on bar instability is clearly exhibited by theoretical results
for the growth rate of bottom perturbations reported in figure 4. Note that, for large
enough values of β, damping increases as the standard deviation of the mixture
increases. Also, note that theoretical results for the growth rate include the effect of
the variation of the overall sediment flux, which is found to increase slightly in the
case of the mixture, thus implying a small amplifying contribution to Ω.

In figure 5 the maximum growth rate is plotted versus β for some values of the
mean geometric diameter and different values of the unperturbed Shields stress. The
figure allows a comparison between the results of the bimodal mixture and those
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Figure 5. The theoretical values of the maximum growth rate of bars are plotted versus β for some
values of Θg0 and σ0 = 2. The corresponding theoretical curves for the uniform sediment case are
also reported (dotted lines): (a) dg0 = 0.001; (b) dg0 = 0.01.
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Figure 6. Theoretical values of the maximum growth rate corresponding to the experimental data
reported in figure 3(a). Open and full circles refer to uniform and bimodal sediments, respectively.
The calculations have been carried out by setting b = 0.2.

corresponding to the uniform sediment case (in the following these two cases will be
referred to as bimodal and uniform, respectively, and will be denoted by the subfixes
b and u). In the uniform case we have used the geometric grain diameter dg0 of the
bimodal mixture to compute the bedload function, while we have set the bottom grain
roughness equal to nσdσ in order to keep the same friction coefficient C as the bimodal
case. Figure 5 suggests that, while sediment heterogeneity affects the threshold value
of β for bar instability only slightly, a significant damping of the growth rate of bar
perturbations generally occurs. Reduction of the growth rate is larger for smaller
values of Shields stress and of grain roughness. As the latter parameters increase, the
effect of sorting may also become slightly destabilizing, as indicated in figure 5(b).
However, for given values of Shields stress and grain roughness, a value of β > βc
always exists such that the maximum growth rate predicted by linear theory in the
bimodal case falls below the value corresponding to the uniform case. As Θg0 and dg0

decrease, this threshold value of β approaches βc.
Figure 6 reports the theoretical values of the maximum growth rate corresponding

to the experimental results summarized in figure 3(a), hence allowing an indirect
comparison between theoretical predictions and experimental findings. It appears
that the overall effect of sediment heterogeneity is adequately reproduced by the
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Figure 7. The maximum growth rate of bar perturbations is plotted versus β for different values
of the exponent b of the hiding function (2.15): Θg0 = 0.08, dg0 = 0.001, σ0 = 2.
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Figure 8. Theoretical values of the dimensionless angular frequency ω corresponding to the data
reported in figure 6. Open and full circles refer to uniform and bimodal sediments, respectively. The
calculations have been carried out by setting b = 0.2.

theoretical solution in that the damping effect is larger for low values of Θg0 and
vanishes when Θg0 increases to a value approximately equal to 0.1.

It is worth pointing out that the effect of non-uniformity is enhanced at small
values of Θg0. In fact, sorting mainly influences bar stability through the dependence
of longitudinal and transverse bed load on grain size which is embodied in (2.12),
(2.14) and (2.18). It can be readily seen that both contributions become vanishingly
small as the Shields parameter increases: in particular, the asymptotic condition of
equal mobility is progressively met at large values of Shields stress such that the
function G(ζ) becomes independent of the grain size.

The magnitude of the reduction of growth rate due to sediment heterogeneity is
strongly affected by the value adopted for the exponent b of the hiding function
(2.15). Data reported in figures 4 and 5 are obtained with b = 0.1, which implies
that a small (but significant) deviation from equal mobility is accounted for. When
the exponent b is increased within the range of observed values, the effect of sorting
on the growth rate of bars becomes invariably stabilizing, as suggested by figure 7.
This also indicates that the unequal response of grain sizes in a mixture to spatial
variation of bottom stress, whose effect is magnified when b is fairly large, constitutes
the main stabilizing ingredient of the present analysis. This result will be more fully
discussed below.

A further notable feature of the linear solution is that theoretical results seem to
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Figure 9. The critical values of width ratio βc and bar wavenumber αc predicted by linear theory
are plotted versus Shields parameter for some values of σ0 and dg0. The corresponding curves for
the uniform case are also reported (dotted lines): (a) dg0 = 0.001; (b) dg0 = 0.01.

reproduce the tendency of sediment heterogeneity to prevent downstream migration of
bars, which has been observed by Lisle et al. (1991) in flume experiments characterized
by shallow depth and widely graded sediments. Indeed, the theoretical values of the
angular frequency, reported in figure 8 and corresponding to the experimental results
of Lanzoni et al. (1994), support the idea that mixed-size sediments might appreciably
inhibit bar migration.

Figure 9 allows a comparison between the critical values of the wavelength and
width ratio (i.e. the values corresponding to the minimum of a given neutral stability
curve) calculated both for the bimodal mixture and for the uniform sediment. It
turns out that grain sorting leads to a reduction of the wavelength selected by the
instability process, in agreement with experimental findings. Moreover, figure 9 clearly
shows that the effect of sorting on βc is fairly weak. Stabilizing effects prevail for
larger values of Θg0, while βc may be reduced due to sorting when the Shields stress
approaches its threshold value.

A closer comparison between predicted and observed bar wavelengths is difficult
even in the case of uniform sediment owing to the flatness of the marginal stability
curve, which implies that a relatively wide range of wavenumbers is characterized by
almost identical growth rates (see figure 4 of Colombini et al. 1987). Note, however,
that in Lanzoni et al.’s (1994) experiments the relative shortening of bar length with
respect to the case of uniform sediment varies between 0.16 and 0.42, with an average
value of 0.32, while for the same set of data predicted values fall in the range 0.21–0.56,
with an average value of 0.42.
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We now attempt to provide a physical interpretation of the experimental and
theoretical results discussed above. We assume the bottom perturbation η̂1 to be
purely real, which implies that we set the origin of the s-axis in the section where, for
n = 1, the maximum bed elevation occurs. Whence, the linear solution can be written
in the form

{U1, D1, H1, Qs1} = {|u1|, |d1|, |h1|, |qS1|} sin
(

1
2
πn
)

exp (Ωt)


cos (αs− ωt− δu)
cos (αs− ωt− δd)
cos (αs− ωt− δh)
cos (αs− ωt− δqs)

 ,

(5.1a)

{V1, Qn1} = {|v1|, |qn1|} cos
(

1
2
πn
)

exp (Ωt)

{
cos (αs− ωt− δv)
cos (αs− ωt− δqn)

}
, (5.1b)

{η1, f1} = {e, |ϕ|} sin ( 1
2
πn) exp (Ωt)

{
cos (αs− ωt)
cos (αs− ωt− δϕ)

}
, (5.1c)

where δi denotes the phase lag between the bed profile and a given variable. For a bi-
modal mixture the sediment balance equation (4.3) leads to the following relationship
for the growth rate:

Ω = 1
2
π
|qn1|
e

cos (δqn)− α|qs1|
e

sin (δqs)− α|qϕ|
e

sin (δqϕ), (5.2)

where

qϕ = ϕ1(Φ01 − Φ02), qs1 = f01 qs1 + f02 qs2, qn1 = f01 qn1 + f02 qn2. (5.3a–c)

Note that retaining only the first two terms on the right-hand side of (5.2) we recover
the uniform case investigated by Colombini et al. (1987). Sediment heterogeneity has
a twofold effect on Ω. In fact, the different mobility of individual grain size fractions
within the mixture not only modifies the sediment transport capacity, namely qs1 and
qn1, but also induces a longitudinal and transverse pattern of sorting. The resulting
perturbation ϕ of the grain size distribution function affects in turn qs1 and qn1;
moreover, it produces a further contribution, namely the third term on the right-hand
side of (5.2), which vanishes when the asymptotic condition of equal mobility (i.e.
b = 0) holds.

Figure 10 shows a typical example of the behaviour of the various phase lags δi
for the bimodal case as the wavenumber changes, for given values of the parameters
Θg0, dg0, σ0, and β. Results for the uniform case are also reported. It appears that
δh, δd, δv and δqn are weakly affected by sediment non-uniformity. In particular, the
flow depth is nearly in opposition to the bed profile (δd ∼ π) while the peak of
transverse velocity V1 is located about a quarter of a wavelength ahead of the peak
of bottom profile, since δv is slightly larger than π/2. Furthermore, the phase lag
of the transverse sediment transport δqn ranges between π/2 and π, thus implying a
stabilizing contribution to Ω, as indicated by (5.2). Incidentally, we may note that
this stabilizing contribution increases with the transverse mode number; therefore, it
inhibits preferentially the development of higher-order transverse modes.

The peak of the longitudinal sediment transport qs1, as well as the peaks of U1 and
τs1, lag upstream of the bottom crests since π < δqs < 2π. Consequently, the second
term on the right-hand side of (5.2) is always positive, which implies a destabilizing
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Figure 10. The phase lags of various flow and sediment properties with respect to bed profile are
plotted versus bar wavenumber. Results for the uniform sediment case are reported as dotted lines.
(β = 15; Θg0 = 0.08; dg0 = 0.001; σ0 = 2).

contribution. Sediment heterogeneity leads to a reduction of δqs with respect to the
uniform case, thus implying a decrease (increase) of the destabilizing contribution
associated with qs1 depending on whether δqs is smaller (larger) than 3π/2.

The effect sediment non-uniformity on the amplitude of the longitudinal and
transverse components of sediment transport is illustrated in figure 11. It appears
that according to (5.2) both |qs1| and |qn1| contribute to the reduction of the growth
rate of bar perturbations with respect to the uniform case since |qs1|b/|qs1|u < 1 and
|qn1|b/|qn1|u > 1.

The effect on |qn1| can be easily understood through direct inspection of (3.12b)
which suggests that sediment non-uniformity enters into the problem through the
dependence of the transport function Φ and of the coefficient R on the grain size. If
we keep only the contribution related to transverse bedload, equation (5.2) reduces
to the expression

Ω = 1
4
π2Θ

3/2
g0 {f01G(φ1)R(φ1) + f02G(φ2)R(φ2)}. (5.4)

Therefore, the stabilizing effect associated with Qn1 increases with respect to the
uniform case according to the ratio

f01G(φ1)[fhr(φ1)]
−1 + f02G(φ2)[fhr(φ2)]

−1

G(φg0)
,
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Figure 11. The ratio between the amplitudes of the perturbations of longitudinal and
transverse components of sediment transport calculated for the bimodal case and for the
uniform case is plotted versus bar wavenumber. The ratio |qϕ|b/|qs|u is also reported.
(β = 15;Θg0 = 0.08; dg0 = 0.001; σ0 = 2).

which is always greater than 1 and increases as the variance of the mixture increases.
Regarding the reduction of |qs1| with respect to the uniform case reported in figure

11, it is not easy to analyse separately the role played by the various terms contributing
to Qs1 in (3.12a). However, we may observe that qη , namely the contribution associated
with the variation of the transport function G with respect to the Shields parameter,
decreases with respect to the uniform case, the reduction being more appreciable as
the Shields parameter decreases.

A direct effect of grain sorting on Ω is embodied in the third term on the right-hand
side of (5.2); it appears that this contribution always induces damping of the growth
rate of bar perturbations since π/2 < δqϕ < π. This stabilizing effect is essentially
related to the progressive coarsening which takes place along the upstream face of
bars, namely near the peak of bottom shear stress, as a consequence of the selective
transport of different grain size fractions. In fact, the derivative of the sediment load
function Φ with respect to the shear stress τ is such that the ratio

Φ,τ|di
Φ,τ|dg =

G(φi)

G(φg)

3
2

+ Γ (φi)
3
2

+ Γ (φg)
(5.5)

is greater or smaller than 1, depending on whether di is finer or coarser than dg ,
respectively. As a consequence, different grain sizes display a different response to
the increasing values of bed shear stress which occur along the rising part of the
bottom profile, leading to coarsening of the bed composition since finer particles
are more easily transported. Indeed, figure 10 shows that the phase lag δϕ1 of the
perturbation of grain size distribution ranges between 3π/2 and 2π, which implies
that the coarser fraction prevails upstream of the bar crest. The above findings agree
with the experimental observations of Lisle et al. (1991), Lisle & Madej (1992) and
Lanzoni (1996).

The above tendency is counteracted by gravitational effects which tend to pull
coarser particles downward selectively (see Parker & Andrews 1985). The experimental
results seem to suggest that the former mechanism, namely the unequal response of
grain sizes to bottom stress, prevails in the case of bars since spatial variations
of bottom topography are relatively slow. It may turn out that gravity becomes
the dominant mechanism which controls the location of grain sizes in the case of
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Figure 12. The theoretical predictions of the growth rate of alternate bars for a bimodal mixture
(solid line) are compared with the values of Ω obtained in the uniform sediment case (dotted
line) and with the values obtained in the bimodal case neglecting the effect of sorting on the
longitudinal (· · · + · · · , ϕ = 0, b = 0) and transverse (· · · • · · · , fhr = 0) component of bedload:
β = 15, Θg0 = 0.08, dg0 = 0.001, σ0 = 2.

bedforms of smaller spatial scale, such as dunes, or when finite-amplitude effects are
more prominent.

A further consequence of the sorting pattern induced by bar topography is that it
implies a reduction of longitudinal sediment transport with respect to the uniform case
in the region where less mobile coarser particles preferentially accumulate, namely
along the upstream face of bars. Therefore, a positive contribution to qs,s is generated
in the neighbourhood of a bar crest, which implies a negative contribution to bottom
development, according to equation (3.8).

Regarding the effects of grain sorting on the migration of bars, theoretical results
support the idea, reported by Lisle et al. (1991), that bar coarsening is mainly
responsible for the observed stabilization of bars. In fact, the effect of sediment
heterogeneity on the wave speed of bars is felt essentially through the dependence of
ω on the perturbation of the grain size distribution ϕ. From (4.3) and (5.1) we obtain

ω ∝ cos (δqϕ). (5.6)

Hence, bar coarsening, which implies that δqϕ falls in the range π/2–π as discussed
above, leads to a negative contribution to the wave speed.

An example of how the various mechanisms affect the growth rate of bar pertur-
bations is given in figure 12. From the preceeding discussion it clearly emerges that,
within a fairly wide range of values of the dimensionless control parameters (Θg0, dg0

and β), various contributions related to sediment heterogeneity act simultaneously
to produce an overall stabilizing effect on bottom development, which leads to a
non-negligible reduction of the depths of scour and deposition associated with bar
formation, and a damping of migration speed. This is the main practical implication
of the present work, which mostly applies to gravel bed rivers. The theoretical model
presented herein seems to reproduce adequately the main features of bar develop-
ment related to the heterogeneous character of sediments which have been observed
experimentally, namely the overall stabilizing effect on bar height, the shortening of
bar wavelengths, the decrease of migration speed, as well as the pattern of sorting
induced by bottom development.

However, predicting the equilibrium bar morphology would require that the as-
sumption of small perturbations be removed. To this end the development of a sound
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model for vertical sorting is required as the first step to incorporate in the analysis
finite-amplitude effects on the sorting process. Furthermore, the introduction of sus-
pended load effects may allow the extension of the theory to the case when the grain
size distribution includes the sand range. In this case it is possible that the effect on
bed stability of sediment heterogeneity may become even more pronounced due to
the strong selective character of suspended load.
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